S43B-4554:
Seismic Attenuation beneath Tateyama Volcano, Central Japan

Thursday, 18 December 2014
Koji Iwata, Ritsumeikan University, Kusatsu, Japan, Hironori Kawakata, Ritsumeikan University, Kusatsu Shiga, Japan and Issei Doi, Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan
Abstract:

Subsurface structures beneath active volcanoes have frequently been investigated (e.g., Oikawa et al., 1994: Sudo et al., 1996), and seismic attenuation beneath some active volcanoes are reported to be strong. On the other hand, few local subsurface structures beneath volcanoes whose volcanic activities are low have been investigated in detail, though it is important to study them to understand the potential of volcanic activity of these volcanoes. Then, we analyzed the seismic attenuation beneath Tateyama volcano (Midagahara volcano) located in central Japan, whose volcanic activity is quite low.

We used seismograms obtained by Hi-net deployed by NIED (National Research Institute for Earth Science and Disaster Prevention). Hi-net is one of the densest seismic station networks in the world, and the spatial interval of their seismographs is about 20 km, which is suitable for investigating local structure beneath an individual volcano. We estimated S-wave attenuation using seismograms at five stations near Tateyama volcano for nineteen small, local, shallow earthquakes (M 2.7-4.0) that occurred from January 2012 to December 2013. We divided these earthquakes into six groups according to their hypocenter locations.

We used twofold spectral ratios around the first S-arrivals to investigate the S-wave attenuation when S-waves passed through the region beneath Tateyama volcano. We focused on station pairs located on opposite sides of Tateyama volcano to each other, and earthquake pairs whose epicenters were located almost along the line connecting Tateyama volcano and the two stations, so that the spectral ratios reflect a local structure beneath Tateyama volcano.

Twofold spectral ratios of all seismograms for S waves having northwestern or southeastern sources show strong attenuation beneath Tateyama volcano. On the other hand, those of seismograms having northeastern or southwestern sources show much weaker attenuation, which suggested that the region of strong attenuation is anisotropic and/or has complicated shape.