B31E-0052:
Ecohydrology of seepage springs in an urban National Park

Wednesday, 17 December 2014
Karen Knee, Jacob Melone, Benjamin Friedel and Daniel Fong, American University, Washington, DC, United States
Abstract:
Shallow groundwater-fed seepage springs, also known as hypotelminorheic habitats, are found around the Washington, DC area, including in the George Washington Parkway, a National Park unit in northern Virginia. These springs differ from better-known vernal pools both in their hydrology and their ecology: because they are groundwater-fed, they are more resistant to drying out than vernal pools, and they harbor cave-adapted arthropod species including amphipods of the genus Stygobroumus. This project seeks to understand the ecohydrology of the hypotelminorheic habitats that support these species, some of which are endangered, and which comprise an important but underappreciated component of biodiversity in DC-area National Parks. Our study focuses on two hypotelminorheic habitats in the GW Parkway area and consists of three main components: (1) a weekly population census of Stygobroumus using multiple mark-recapture methodology, (2) weekly monitoring of dissolved radon, a tracer of groundwater discharge, as well as conductivity, dissolved oxygen, and pH, and (3) continuous logging of spring water temperature. This poster presents preliminary data from the Stygobroumus population census and explores how these animals may be affected by spring hydrology. Specifically, we use temperature, conductivity, radon activity and precipitation data from a nearby weather station to understand how the springs respond to episodic and seasonal variation in temperature, precipitation and groundwater seepage and how this affects Stygobromus populations. We also explore whether variations in Stygobromus counts reflect (1) active migration between the surficial spring and the larger subterranean habitat, or (2) passive flushing driven by groundwater discharge. Our results provide basic hydrologic data about a little-understood habitat type and will help managers protect Stygobromus in the urban park environment.