A magmatic probe of dynamic topography beneath western North America

Wednesday, 17 December 2014
Marthe Klöcking, Nicholas J White and John Maclennan, University of Cambridge, Cambridge, United Kingdom
A region centered on the Yellowstone hotspot and encompassing the Colorado Plateau sits at an elevation 2 km higher than the cratonic North America. This difference broadly coincides with tomographically observed variations in lithospheric thickness: ~120 km beneath western North America, ~240 km beneath the craton. Thermochronology of the Grand Canyon area, sedimentary flux to the Gulf of Mexico, and river profile inversion all suggest that regional uplift occurred in at least two separate stages. High resolution seismic tomographic models, using USArray data, have identified a ring of low velocity material beneath the edges of the Colorado Plateau. Magmatism coincides with these low velocity zones and shows distinct phases: an overall increase in volume around 40 Ma and a change from lithospheric to asthenospheric signatures around 5 Ma. Volcanism is also observed to migrate north-east with time. Here, we attempt to integrate these different observations with lithospheric thickness. A dynamic topography model of progressive lithospheric erosion over a hot mantle plume might account for uplift as well as the temporal and spatial distribution of magmatism across western North America. Thinning of the lithosphere around the edges of the Colorado Plateau in combination with the hotter mantle potential temperature of a plume could create isostatic and dynamic uplift as well as allowing for melt production. To test this model, we have analysed around 100 samples from volcanic centers across western North America by ICP-MS for rare earth elements (REE). Most of the samples are younger than 5 Ma, and all of them have previously been analysed by XRF. Using trace element ratios such as La/Yb and Nb/Y we assess depth of melting and melt fraction, respectively. In addition, we use REE inversion modelling to estimate melt fractions as a function of depth and temperature of melting. The results are compared to existing constraints on lithospheric thickness and mantle potential temperature.