V53A-4837:
Evolution of fracture permeability of ultramafic rocks at hydrothermal conditions: An experimental study on serpentinization reactions

Friday, 19 December 2014
Aida Farough1, Diane E Moore2, David A Lockner2 and Robert P Lowell1, (1)Virginia Polytechnic Institute and State University, Geosciences, Blacksburg, VA, United States, (2)USGS, Menlo Park, CA, United States
Abstract:
Serpentinization of ultramafic rocks, during which olivine and pyroxene minerals are replaced by serpentine, magnetite, brucite and talc, is associated with hydrothermal activity at slow and ultraslow mid-ocean ridges. Serpentinization reactions affect hydrothermal fluid circulation by changing permeability of the oceanic crust. To advance our understanding of the evolution of permeability accompanying serpentinization reactions, we performed a series of flow-through experiments at a temperature of 260˚C, a confining pressure of 50 MPa, and a pore pressure of 20±2 MPa on cylindrical cores of ultramafic rocks (18 mm in diameter and 23 mm length) containing a single through-going tensile fracture. Pore fluid flow was in one direction and was collected routinely for chemical analysis. A 7.5 mm thick layer of the same rock, crushed and sieved (0.18-1.0 mm) was placed on the inlet end of the sample to produce a reactive heated reservoir for the pore fluid before entering the fracture. Multiple peridotite samples were tested, to investigate the effect of mineral assemblage on fluid-rock interaction and permeability.

The initial effective permeability of the samples varied between 10-(15-18)m2, and it decreased by about 2 orders of magnitude in 7-10 days, showing that serpentinization reactions result in an initially rapid decrease in permeability. The best fit equation for the observed rate of change in permeability (k) is in the form of dk/dt=Ae-0.01t, where A is a constant and t is time. This result suggests that the rate of serpentine formation is largely controlled by the initial permeability rather than the properties of the reacting rock. Assuming flow between parallel plates, we find the effective crack width decreases by approximately 2 orders of magnitude during the experiments. The fluid chemistry and mineralogy data support the occurrence of serpentinization reactions. The early peak and monotonic decrease in the concentration of Mg, and Si in pore fluid collected from all samples is consistent with an initial phase of rapid Mg-silicate dissolution followed by a declining rate as precipitation coated reactive surfaces. EMP analysis and SEM imaging show precipitation of serpentine phases along the walls of the tensile fracture, which is the main factor contributing to the reduction in permeability.