Lithospheric Mantle Contribution to High Topography in Central Mongolia

Tuesday, 16 December 2014
Richard W Carlson, Carnegie Institution for Science, Washington, DC, United States and Dmitri A Ionov, University of Montpellier II, Montpellier Cedex 05, France
Over 110 spinel peridotite xenoliths collected from four localities in the Tariat region, central Mongolia, show a predominance (over 90%) of fertile lherzolites with subordinant harzburgite and peridotites veined with pyroxenite. Equilibration temperatures are high (~900°C at 1.5 GPa [1]). Major element compositions of the fertile samples are consistent with them being the residues of 0-6% partial melt removal at shallow depths [2]. The clinopyroxenes in the lherzolites are moderately LREE depleted (average chondrite normalized La/Sm = 0.45) and most whole rocks show small, if any, depletions in Re and Pd compared to the other HSE. These data point to minimal metasomatic overprinting of these fertile lherzolites. 187Os/188Os for samples with more than 3.2% Al2O3 range only from 0.126 to 0.131, within the range of modern fertile asthenospheric mantle. In contrast to the indicators of fertility in most samples, Sr, Nd and Hf isotopic composition of acid-leached clinopyroxene separates from the lherzolites plot within the range of modern MORB with 87Sr/86Sr from 0.7021 to 0.7026, eNd from +7.7 to +9.8 and eHf from +13.3 to +18.5. The lherzolites thus appear to sample a section of mantle that has compositional and isotope characteristics consistent with modern fertile asthenosphere. The isotopic composition of the Tariat lherzolites are distinct from that of Cenozoic Mongolian basaltic volcanism pointing to limited involvement of the lithospheric mantle in magma generation in this area. The implied asthenospheric provenance of the mantle lithosphere suggests that it either could be the replacement for recently delaminated lithosphere or, more likely, a section of fertile mantle accreted to the base of the crust earlier, e.g. during construction of the Central Asian Orogenic Belt in the Mesozoic/Paleozoic. Although fertile, and hence compositionally dense, the high temperatures of the shallow lithospheric mantle under this section of Mongolia likely contribute to the high elevation of the Hangay uplift. [1] Ionov, D.A., Contrib. Mineral. Petrol. 154, p455, 2007. [2] Ionov and Hofmann, EPSL 261, p620, 2007.