C13B-0451:
Are Glaciers and Ice Sheets Carbon Sources or Carbon Sinks?

Monday, 15 December 2014
Joseph A Graly, James I Drever and Neil F Humphrey, University of Wyoming, Laramie, WY, United States
Abstract:
Subglacial waters typically contain considerable quantities of HCO3-. Where this HCO3- is coupled with Ca2+ and Mg2+, it will ultimately precipitate as (Ca, Mg)CO3 in the oceans. If the glacial HCO3- is derived from atmospheric CO2, this pathway represents a long-term CO2 sink. If the HCO3- is derived from carbonate minerals, precipitation is equal to dissolution and there is no net effect on the CO2 balance of the atmosphere. Only the weathering of Ca or Mg-bearing silicates can potentially draw CO2 out of the ocean/atmosphere system. Subglacial environments are potential habitats for a range of microbes that may generate CO2 from organic C. If the production of CO2 from organic sources exceeds the weathering of Ca and Mg from silicates, the subglacial environment is a long-term CO2 source.

In order to determine whether ice bodies typically act as CO2 sources or sinks, we modeled the evolution of pH and alkalinity through a range of typical subglacial weathering reactions, considering both the case in which CO2 and O2 can openly exchange with the atmosphere and the case in which the subglacial environment is closed from atmospheric interaction. We find that in the closed system scenario, subglacial waters cannot reach atmospheric PCO2 levels under typical conditions. Initial open system weathering followed by closed system weathering can allow CO2 supersaturation when sulfide oxidation is considered.

We use this result to analyze pH and alkalinity measurements from a geographically and geologically diverse selection of subglacial waters. The PCO2 of most of the subglacial waters is near or above atmospheric values. This implies that exchange of gases between subglacial waters and the atmosphere is typical and widespread. This input of atmospheric CO2 into the glacial weathering environment implies that about 5 mg of CO2 are typically removed from the atmosphere per l of glacial discharge water. Similar PCO2 values can be produced in an entirely closed system if organic C is broken down through anoxic fermentation. These closed system assumptions would require order of 10 mg of CO2 production per l. As that rate of organic decomposition cannot be sustained over a glacial cycle, we favor the interpretation that glaciers and ice sheets are typically carbon sinks.