A better method to define electrical chargeability from laboratory measurements of spectral impedance using a parallel Cole-Cole equivalent circuit

Thursday, 18 December 2014
Randolph J Enkin, Geological Survey of Canada Pacific, Vancouver, BC, Canada
Induced polarization (IP) is a successful electric method to identify drill targets for mineral exploration at the property scale. The Paleomagnetism and Petrophysics Laboratory at the Geological Survey of Canada makes petrophysical measurements on cylindrical rock samples, 2.5 cm diameter and 2.2 cm long. This small size has advantages, including allowing measurement of magnetic remanence with standard paleomagnetism equipment, but it is too small to allow a 4‑contact electrical impedance measurement. The samples are impregnated with distilled water under vacuum and allowed 24 hours for solutes to dissolve off pore walls, in order to approximate original groundwater ionic conductivity. We use graphite electrodes on the flat surfaces and measure the complex impedance at 5 frequencies per decade from 1 MHz down to 25 mHz. Typical responses on a Cole-Cole plot (i.e., real vs. imaginary components displayed parametrically as a function of frequency) look like a two overlapping circular arcs followed by a constant-phase diffusive response at lowest frequencies. The impedance frequency response is fit with a circuit in which the rock is modelled as a set of parallel resistor and constant-phase-element pathways, connected in series through a modified constant-phase-element representing the low frequency sample-holder response. The program “ZarcFit”, written in LabView, allows the operator to tune parameters of an equivalent but far more intuitive series circuit with a set of 13 sliders, and then perform a least-squares optimization. Time domain chargeability is defined by removing the effect of the sample holder, taking the Fourier transform to convert the frequency response to its time-domain equivalent and then integrating under the resulting voltage-decay curve. Time domain measurements using two-electrode sample holders are necessarily contaminated by the low-frequency response of ionic diffusion at the electrodes. Results are compiled in the Canadian Rock Physical Properties Database. I will present examples of mineralogical/lithological sources of chargeability and a useful mineralization index from combining physical properties which can be estimated from inversion of surface geophysical surveys.