H23S-06:
Predictability of Stemflow in a Species-Rich Tropical Forest
Tuesday, 16 December 2014: 3:20 PM
Alexander Zimmermann, University of Potsdam, Potsdam, Germany and Beate Zimmermann, Research Institute for Post-Mining Landscapes, Finsterwalde, Germany
Abstract:
Numerous studies investigated the influence of abiotic (meteorological conditions) and biotic factors (tree characteristics) on stemflow generation. Though these studies identified the variables that influence stemflow volumes in simply structured forests, the combination of tree characteristics that allows a robust prediction of stemflow volumes in species-rich forests is not well known. For many hydrological investigations, it would be useful if at least a rough estimate of stemflow volumes can be obtained based on tree characteristics. The need for robust predictions of stemflow motivated us to investigate the relations between tree characteristics and stemflow volumes in a species-rich tropical forest located in central Panama. With a sampling setup consisting of 10 rainfall collectors, 300 throughfall samplers, and 60 stemflow collectors and cumulated data comprising 26 rain events, we derive three main findings. First, stemflow represents a minor hydrological component in the studied 1 ha forest patch (0.98 % of cumulated rainfall). Second, in the studied species-rich forest, single tree characteristics are only weakly related to stemflow volumes. The influence of multiple tree parameters (e.g. crown diameter, presence of large epiphytes, and inclination of branches) and the dependencies among these parameters require a multivariate approach to understand the generation of stemflow. Third, predicting stemflow in species-rich forests based on tree parameters is a difficult task. Although the best model can capture the variation in stemflow to some degree, a critical validation reveals that the model cannot provide robust predictions of stemflow. A reanalysis of data from previous studies in species-rich forests corroborates this finding. Based on these results we discuss several options for quantifying stemflow volumes in species-rich forests.