H53K-02:
A non-equilibrium model for soil heating and evaporation under extreme conditions

Friday, 19 December 2014: 1:55 PM
William J Massman, US Forest Service, Fort Collins, CO, United States
Abstract:
Extreme heating of soils during fires can have long-term and irreversible consequences and given the increasing use of prescribed fire by land managers and the increasing probability of wildfires associated with global warming, one approach to improving understanding of these consequences is to better understand and model the dynamics of the coupled heat, (liquid) moisture, and vapor transport in soils during extreme heating events. The present study describes a model developed to simulate non-equilibrium soil evaporation and the transport of heat, moisture, and water vapor under conditions during fires where the surface heating of the soil often ranges between 10,000 and 100,000 Wm-2 for several minutes to several hours. The Hertz-Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. Model performance is tested against laboratory measurements of soil temperature and moisture changes. Testing the present model with different formulations for soil hydraulic conductivity, water retention curve, water activity, and the non-equilibrium evaporative source term, indicates that virtually all the model's successes result from the use of a temperature dependent condensation coefficient in the evaporative source term, a rather surprising and unexpected result. On the other hand, the model solution is not a completely faithful representation of the laboratory data. Nevertheless, this new non-equilibrium model circumvents many of the problems that plagued an equilibrium model developed for the same purpose (Massman 2012: Water Resources Research 48, WR011710) and provides a much more physically realistic simulation than the earlier model. Finally, the present model should provide insight into modeling of heat and mass transport and evaporation, not only during high temperature and low moisture conditions, but for modeling these soil processes under less extreme environmental conditions as well.