Rheology of lava flows on Mercury: an experimental study

Monday, 15 December 2014
Alexander Sehlke and Alan G Whittington, University of Missouri Columbia, Columbia, MO, United States
The morphology of lava flows is controlled by the physical properties of the lava and its effusion rates, as well as environmental influences such as surface medium, slope and ambient temperature and pressure conditions. The important rheological properties of lavas include viscosity (η) and yield strength (σy), strongly dependent on temperature (T), composition (X), crystal fraction (φc) and vesicularity (φb). The crystal fraction typically increases as temperature decreases, and also influences the residual liquid composition. The rheological behavior of multi-phase lava flows is expressed as different flow morphologies, for example basalt flows transition from smooth pahoehoe to blocky `a`a at higher viscosities and/or strain rates. We have previously quantified the rheological conditions of this transition for Hawaiian basalts, but lavas on Mercury are very different in composition and expected crystallization history.

Here we determine experimentally the temperature and rheological conditions of the pahoehoe-`a`a transition for two likely Mercury lava compositions using concentric cylinder viscometry. We detect first crystals at 1302 ºC for an enstatite basalt and 1317 ºC for a basaltic komatiite composition representative of the northern volcanic plains (NVP). In both cases, we observe a transition from Newtonian to pseudo-plastic response at crystal fractions > 10 vol%. Between 30 to 40 vol%, a yield strength (τ0) around 26±6 and 110±6 Pa develops, classifying the two-phase suspensions as Herschel-Bulkley fluids. The measured increase in apparent viscosity (ηapp) ranges from 10 Pa s to 104 Pa s. This change in rheological properties occurs only in a temperature range up to 100 ºC below the liquidus.

By analogy with the rheological conditions of the pahoehoe-`a`a transition for Hawaiian basalts, we can relate the data for Mercury to lava flow surface morphology as shown in Figure 1, where the onset of the transition threshold zone (TTZ) for the enstatite basalt composition is around 1270 ˚C and 1300 ºC for the NVP composition. This is 70 ºC to 100 ºC higher than for Kilauea basalt. These data may allow emplacement temperatures and/or rates to be determined from remote sensing observations of the surface morphology of different volcanic fields on Mercury.