Rupture Velocities of Intermediate- and Deep-Focus Earthquakes

Wednesday, 17 December 2014
Linda M Warren, Saint Louis University Main Campus, Saint Louis, MO, United States
The rupture velocities of intermediate- and deep-focus earthquakes --- how they vary between subduction zones, how they vary with depth, and what their maximum values are --- may help constrain the mechanism(s) of the earthquakes. As part of a global study of intermediate- and deep-focus earthquakes, I have used rupture directivity to estimate the rupture vector (speed and orientation) for 422 earthquakes >70 km depth with MW ≥5.7 since 1990. I estimate the rupture velocity relative to the local P-wave velocity (vr/α). Since the same method is used for all earthquakes, the results can be readily compared across study areas. The study areas --- Middle America, South America, Tonga-Kermadec, Izu-Bonin-Marianas, and Japan-Kurils-Kamchatka --- include some of the warmest and coldest subduction zones: subducting plate ages range from 9-150 Myr and descent rates range from 1-13 cm/yr. Across all subduction zones and depth ranges, for the 193 earthquakes with observable directivity and well-constrained rupture vectors, most earthquakes rupture on the more horizontal of the two possible nodal planes. However, the rupture vectors appear to be randomly-oriented relative to the slip vector, so the earthquakes span the continuum from Mode II (i.e., parallel slip and rupture vectors) to Mode III rupture (i.e., perpendicular slip and rupture vectors). For this earthquake population, the mean rupture velocity is 0.43 vr/α ± 0.14 vr/α. The mean earthquake rupture velocities are similar between all subduction zones. Since the local seismic wavespeed is faster in colder subduction zones, absolute rupture velocities are faster in colder subduction zones. Overall, the fastest rupture velocities exceed the local S-wave speed. The supershear ruptures are associated with earthquakes closer to Mode II than Mode III faulting. This is consistent with theoretical calculations, which limit the rupture velocity to the S-wave speed for Mode III rupture but the P-wave speed for Mode II rupture.