A43F-3331:
Climate Change Response of Ocean Net Primary Production (NPP) and Export Production (EP) Regulated by Stratification Increases in The CMIP5 models
A43F-3331:
Climate Change Response of Ocean Net Primary Production (NPP) and Export Production (EP) Regulated by Stratification Increases in The CMIP5 models
Thursday, 18 December 2014
Abstract:
Ocean warming due to rising atmospheric CO2 has increasing impacts on ocean ecosystems by modifying the ecophysiology and distribution of marine organisms, and by altering ocean circulation and stratification. We explore ocean NPP and EP changes at the global scale with simulations performed in the framework of the fifth Coupled Model Inter-comparison Project (CMIP5). Global NPP and EP are reduced considerably by the end of the century for the representative concentration pathway (RCP) 8.5 scenario, although models differ in their significantly in their direct temperature impacts on production and remineralization.The Earth system models used here project similar NPP trends albeit the magnitudes vary substantially. In general, projected changes in the 2090s for NPP range between -2.3 to -16.2% while export production reach -7 to -18% relative to 1990s. This is accompanied by increased stratification by 17-30%. Results indicate that globally reduced NPP is closely related to increased ocean stratification (R2=0.78). This is especially the case for global export production, that seems to be mostly controlled by the increased stratification (R2=0.95). We also identify phytoplankton community impacts on these patterns, that vary across the models. The negative response of NPP to climate change may be through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. There are large disagreements among the CMIP5 models in terms of simulated nutrient and oxygen concentrations for the 1990s, and their trends over time with climate change. In addition, potentially important marine biogeochemical feedbacks on the climate system were not well represented in the CMIP5 models, including important feedbacks with aerosol deposition and the marine iron cycle, and feedbacks involving the oxygen minimum zones and the marine nitrogen cycle. Thus, these substantial reductions in primary productivity and export production over the 21st century simulated under the RCP 8.5 scenario were likely conservative estimates, and may need to be revised as marine biogeochemistry in Earth System Models (ESMs) continues to be developed.