DI23A-4281:
Constraining Mantle Heterogeneities with Joint Inversions of Seismic, Geodynamic, and Mineral Physics Data

Tuesday, 16 December 2014
Chang Lu1, Stephen P Grand1, Alessandro M Forte2 and Nathan A Simmons3, (1)University of Texas at Austin, Jackson School of Geosciences, Austin, TX, United States, (2)Université du Québec à Montréal, GEOTOP, Montreal, QC, Canada, (3)Lawrence Livermore National Laboratory, Atmospheric, Earth and Energy Division, Livermore, CA, United States
Abstract:
Two outstanding goals of solid earth geophysics are to determine the chemical structure of the Earth and to understand the dynamics of its interior. The dynamics of the mantle are controlled by density variations and combined knowledge of density structure and seismic velocities provide the strongest constraints on chemical heterogeneity. Unfortunately, most of the traditional geophysical methods such as seismic tomography and geodynamic modeling alone cannot adequately resolve the density structure within the mantle. Thus, seismic, geodynamic and mineral physics joint inversion methods have been applied to better understand the dynamics of the mantle in recent years (e.g. Simmons et al. 2010). In these joint inversions, P wave and S wave travel times, as well as four convection-related geodynamic observations (free air gravity, tectonic plate motion, dynamic topography, and the excess ellipticity of the core-mantle boundary) can be used to produce 3-D models of density and seismic velocities simultaneously. The approach initially attempts to find a model that assuming temperature controls lateral variations in mantle properties and then to consider more complicated lateral variations that account for the presence of chemical heterogeneity to further fit data. Here we present new joint inversion results include 50% more new S wave travel time data than in previous work and geodynamic data that extend to larger spherical harmonic degrees. In addition, temperature derivatives of P and S velocity and density have been determined using an updated mineral physics dataset. For the first time we include non-linear anelastic temperature effects on velocities in the joint inversion. The anelastic effects decrease the required high density component within the lower mantle superplumes. The hypothesis that temperature variations explain most observed heterogeneity within the mantle is consistent with our data.

Reference:
Simmons, N. A., A. M. Forte, L. Boschi, and S. P. Grand (2010), GyPSuM: A joint tomographic model of mantle density and seismic wave speeds, Journal of Geophysical Research: Solid Earth, 115(B12), B12310, doi:10.1029/2010JB007631.