C53C-0332:
Glacial History of the Pirrit Hills, West Antarctica

Friday, 19 December 2014
Perry E Spector and John O Stone, University of Washington Seattle Campus, Seattle, WA, United States
Abstract:
We present new ice-thickness constraints from the Pirrit Hills, a small, far-flung group of nunataks located in the Weddell Sector. At the Pirrit Hills, fresh glacial erratics indicate ice levels ~350-450 m above present during the last ice age. The highest erratics have preliminary 10Be exposure ages of ~16 ka, and the ages generally decrease with decreasing elevation, recording the thinning of the ice in the region. Despite the evidence of thicker ice, weathered bedrock extends down to the present ice level, implying prolonged subaerial weathering prior to the last ice age. These features, and the lack of evidence for wet-based glacial erosion, indicate cold-based and non-erosive ice cover. Over the elevation range in which we found glacial erratics, bedrock 10Be, 26Al, and 21Ne concentrations are consistent with modest ice cover, and have exposure ages ranging from ~0.3-1.5 Myr.

Around 450 m above the present ice level, bedrock 10Be, 26Al, and 21Ne concentrations increase by a factor of ~4-5 and do not indicate past ice cover. This height coincides with a break in the otherwise steep slopes of the Pirrit Hills, and the bedrock above is more weathered than the bedrock below. This transition marks the height above which ice cover, if it has occurred in the past few million years, has been very rare, brief, and cold-based. This feature may relate to the trimline imprinted on ridges in the Ellsworth Mountains. In both cases, alpine landscapes have been preserved by a polar climate and glacial highstands rising only partway up the mountain flanks.