Structure and Dynamics of the Sub-corotating Region of Saturn’s Magnetosphere: Cassini Magnetic Field Observations.

Tuesday, 16 December 2014: 2:52 PM
Edward J Smith, NASA Jet Propulsion Laboratory, Pasadena, CA, United States and Michele Karen Dougherty, Imperial College London, Blackett Laboratory, London, United Kingdom
Measurements of the azimuthal magnetic field component, BΦ, enable the study of the sub-corotating magnetosphere, the associated global current system, the ionospheric Pedersen current, IP, and a comparison with the Cowley-Vasyliunas model. The study is strongly dependent on Cassini’s highly elliptical orbits that restrict useful observations to specific orbits and parts of orbits to avoid weak azimuthal fields associated with the magnetopause or other magnetospheric currents. An example is the selection of thirteen identical orbits near 22 +/- 2 hours Local Time and restriction of the data to 4 to 10 Saturn radii. Inferred IP profiles between 10° and 25° ionospheric co-latitude, θi , when averaged, are similar in shape to model predictions with a peak value of 5 million amperes. However, the individual profiles vary significantly, the result of dynamics associated with large-scale motions of the magnetospheric field. The Cowley-Vasyliunas model also relates IPi) to magnetospheric rotation rates, ΩS, equivalent to the SKR period, and the sub-corotation rate, ω, and provides a means of estimating ω / ΩS in the night-side magnetosphere as compared to the dayside rotation rates obtained from azimuthal plasma velocity measurements, VΦ. Other carefully- selected orbits extend these results to different ranges in θi and Local Times and provide further values of important magnetospheric parameters and allow additional testing of the model.