S51A-4418:
A probabilistic assessment of waste water injection induced seismicity in central California

Friday, 19 December 2014
Thomas Goebel1, Egill Hauksson2, Jean-Paul Ampuero2, Fred Aminzadeh1, Frederic Cappa3 and Jason Saleeby4, (1)University of Southern California, Los Angeles, CA, United States, (2)California Institute of Technology, Pasadena, CA, United States, (3)GeoAzur, Valbonne, France, (4)CALTECH, Pasadena, CA, United States
Abstract:
The recent, large increase in seismic activity within the central and eastern U.S. may be connected to an increase in fluid injection activity since ~2001. Anomalous seismic sequences can easily be identified in regions with low background seismicity rates. Here, we analyze seismicity in plate boundary regions where tectonically-driven earthquake sequences are common, potentially masking injection-induced events. We show results from a comprehensive analysis of waste water disposal wells in Kern county, the largest oil-producing county in California. We focus on spatial-temporal correlations between seismic and injection activity and seismicity-density changes due to injection. We perform a probabilistic assessment of induced vs. tectonic earthquakes, which can be applied to different regions independent of background rates and may provide insights into the probability of inducing earthquakes as a function of injection parameters and local geological conditions. Our results show that most earthquakes are caused by tectonic forcing, however, waste water injection contributes to seismic activity in four different regions with several events above M4. The seismicity shows different migration characteristics relative to the injection sites, including linear and non-linear trends. The latter is indicative of diffusive processes which take advantage of reservoir properties and fault structures and can induce earthquakes at distances of up to 10 km. Our results suggest that injection-related triggering processes are complex, possibly involving creep, and delayed triggering. Pore-pressure diffusion may be more extensive in the presence of active faults and high-permeability damage zones thus altering the local seismic hazard in a non-linear fashion. As a consequence, generic “best-practices” for fluid injections like a maximum distance from the nearest active fault may not be sufficient to mitigate a potential seismic hazard increase.