Uncertainty In Lagrangian Pollutant Transport Simulations Due to Meteorological Uncertainty at Mesoscale

Wednesday, 17 December 2014
Wayne M Angevine, CIRES, Boulder, CO, United States, Jerome F Brioude, CIRES/CU NOAA, Boulder, CO, United States and Stuart A McKeen, NOAA/ESRL, Boulder, CO, United States
Lagrangian particle dispersion models, used to estimate emissions from observations, require meteorological fields as input. Uncertainty in the driving meteorology is one of the major uncertainties in the results. The propagation of uncertainty through the system is not simple, and has not been thoroughly explored. Here, we take an ensemble approach. Six different configurations of the Weather Research and Forecast (WRF) model drive otherwise identical simulations with FLEXPART for 49 days over eastern North America. The ensemble spreads of wind speed, mixing height, and tracer concentration are presented. Uncertainty of tracer concentrations due solely to meteorological uncertainty is 30-40%. Spatial and temporal averaging reduces the uncertainty marginally. Tracer age uncertainty due solely to meteorological uncertainty is 15-20%. These are lower bounds on the uncertainty, because a number of processes are not accounted for in the analysis. It is not yet known exactly how these uncertainties will propagate through inversions to affect emissions estimates.