V43B-4880:
Monazite trace-element and isotopic signatures of high-pressure metamorphism: examples from the Western Gneiss region, Norway

Thursday, 18 December 2014
Robert M Holder, Bradley R Hacker, Andrew R Kylander-Clark and John M Cottle, University of California Santa Barbara, Santa Barbara, CA, United States
Abstract:
Monazite U-Pb and trace-element data were gathered using LASS (laser-ablation split-stream ICP-MS) from the Western Gneiss region, Norway, to investigate how trace-element composition can be used to differentiate (ultra)high-pressure monazite from low-pressure monazite. Monazite from six samples contains up to 3 % common Pb, despite high U and Th concentrations. These high common-Pb monazites are characterized by high Sr, weak Eu anomalies, and low Y+HREE. The high common-Pb and Sr abundances and the weak Eu/Eu* are interpreted to reflect the absence of feldspar at (U)HP, and the low Y+HREE content is attributed to fractionation of those elements into garnet.

Sr and common Pb in monazite provide a tool for constraining the timing and duration of (U)HP metamorphism. More generally, Sr in monazite is a potential indicator of feldspar instability and may be applicable in other geologic settings, such as igneous systems in which the abundance of feldspar changes due to melting and crystallization. Sr is expected to be more reliable than Eu and Eu/Eu* as a tracer of feldspar stability, because Sr partitioning is less strongly influenced by oxidation state.