MR41C-01:
Deformation of Aztec Sandstone at Valley of Fire of Nevada: failure modes, sequence of deformation, structural products and their interplay with paleo fluids

Thursday, 18 December 2014: 8:00 AM
Atilla Aydin, Stanford University, Stanford, CA, United States
Abstract:
The Valley of Fire State Park, 60 km NE of Las Vegas, is a beacon of knowledge for deformation of Aztec Sandstone, a cross-bedded quartz arenite deposited in the Aztec-Navajo-Nugget erg in early Jurassic. It displays great diversity of physical properties, different localization types and micromechanics. The two deformation episodes, the Sevier folding & thrusting and the Basin & Range extension affected the area. The appearance of compaction bands marks the earliest deformation structure and their distribution, orientation, and dimension are controlled by the depositional architecture and loading. The earliest shear structures in the area are the Muddy Mountain, Summit, and Willow Tank thrusts and numerous small-scale bed-parallel faults. They altogether produced several kilometers of E-SE transport and shortening in the late Cretaceous and display numerous shear bands in its damage zone within the Aztec Sandstone. Shear bands also occur along dune boundaries and cross-bed interfaces. These observations indicate that the early deformation of the sandstone was accommodated by strain localization with various kinematics.

The younger generation of faults in the area is of mid-Miocene age, and crops out pervasively. It includes a series of small offset normal faults (less than a few ten meters) which can be identified at steep cliff faces. These faults are highly segmented and are surrounded by a dense population of splay fractures. A large number of these splays were later sheared sequentially resulting in a well-defined network of left- and right-lateral strike-slip faults with slip magnitudes up to a few kilometers in the Park. The formation mechanisms of both the normal and strike-slip faults can be characterized as the sliding along planes of initial weaknesses and the accompanying cataclastic deformation. Some of the initial weak planes are associated with the depositional elements such as interdune boundaries and cross-bed interfaces while others are joint zones apparently not physically connected to any observable normal fault or dune boundary fault, but consistent with the earlier extension direction. The specific kinematics of this latter period of faulting is thought to be dictated by the orientation of the depositional and structural weaknesses and the orientation and rotation of the driving stresses.