Magnetic anomalies on Io and their relationship to the spatial distribution of volcanic centers

Friday, 19 December 2014
Joshua Knicely1, Mark Edward Everett2 and David Walter Sparks2, (1)Texas A & M University, College Station, TX, United States, (2)Texas A & M Univ, College Station, TX, United States
The analysis of terrestrial magnetic anomalies has long proved useful for constraining crustal structure and dynamics. Here, we study Jupiter’s moon, Io, using magnetics. We conduct forward modeling to make predictions of the crustal magnetic anomaly distribution on Io. Io is the most volcanic body in the solar system due to tidal heating from its Laplace resonance with Europa and Ganymede, causing extensive sulfur and silicate volcanism. We assume the magnetic susceptibility, which controls the measured magnetic signal, is controlled by temperature. Continuous overturn of the crust controls the vertical temperature profile, and local volcanic centers give the lateral temperature structure. As non-magnetic sulfur volcanism occurs at cool temperatures beneath the Curie point, it should not greatly affect the planetary magnetism and consequently is ignored in this paper.

We assume that the average crustal temperatures are determined by a model of continuous burial by newly erupted material (O’Reilly and Davies 1981, Geophysical Research Letters), which put the Curie isotherm at great depth. We use a cylindrically symmetric model of the thermal evolution of the crust around an isolated volcanic center to obtain the local deviations in the thickness of the magnetizable layer. The crustal rocks are presumed to be mafic or ultramafic in composition, based on their spectral signatures, the temperature of the silicate volcanic eruptions, and their rheology as inferred from flow structures. Analysis of the 1997 Pillan eruption suggests a composition similar to lunar mare basalt or komatiite. The magnetic and thermal properties of lunar mare basalt have been well studied since the Apollo missions. Unaltered terrestrial ultramafics have been studied sufficiently to constrain their properties.

A common technique of discretizing the magnetized material into prisms and summing the magnetic field of each prism as per Blakely (1995) was used to obtain an estimate of the crustal magnetic anomalies of Io as they would be measured by a satellite. The mapping is displayed as zonal bands so that a Cartesian geometry may be used. Early results indicated an accuracy better than 2 nT is required to detect the magnetic anomalies generated by volcanic activity.