The unexpected response of kelp to wave motion

Monday, 15 December 2014
Julia C Mullarney and Conrad A Pilditch, University of Waikato, Hamilton, New Zealand
Kelp ecosystems offer many ecosystem services such as providing critical habitat for numerous species, trapping contaminants and nutrients and influencing coastal morphology. However, the extent to which kelp ‘goes with the flow’ as opposed to dissipating wave and current energy is unclear. We present innovative measurements of the wave-forced motion of the giant kelp Macrocystis pyrifera at different heights along the length of the stipe using a series of accelerometers attached at fixed intervals.

Observations were taken at the Aramoana breakwater (“the Mole”), located at the entrance to Otago Harbor, New Zealand. This field site encompassed a wave-exposed region open to Pacific swells and a sheltered (harbor) region. Analysis of wave gauge measurements revealed that forcing was dominated by the swell frequency (0.11 Hz). However, the spectra also indicated periods of substantial energy at lower, infragravity wave frequencies (0.011 Hz). Preliminary analysis of the accelerometer data shows significant differences in displacement over the stem length, with large motions apparent at both the top and bottom of the kelp (consistent with visual observations from divers). Initial observations also revealed an unexpected result; different sections of the kelp responded most strongly to different forcing frequencies. In particular, the lowest sensor showed peaks in energy close to both swell and infragravity periods, whereas the higher sensor revealed the surprising result of a strong response at the infragravity frequencies but little movement at the swell frequencies.

We discuss how these results may allow us to determine the extent to which aquatic plants are adapted to minimize stresses imposed by fluid flow and potential consequences for present and future plant community distributions.