IN11A-3597:
Using Enabling Technologies to Facilitate the Comparison of Satellite Observations with the Model Forecasts for Hurricane Study

Monday, 15 December 2014
Peggy Li, Brian Knosp, Svetla M Hristova-Veleva, Noppasin Niamsuwan, Michael P Johnson, Tsae-Pyng J Shen, Simone Tanelli, Joseph Turk and Quoc A Vu, Jet Propulsion Laboratory, Pasadena, CA, United States
Abstract:
Due to their complexity and volume, the satellite data are underutilized in today’s hurricane research and operations. To better utilize these data, we developed the JPL Tropical Cyclone Information System (TCIS) - an Interactive Data Portal providing fusion between Near-Real-Time satellite observations and model forecasts to facilitate model evaluation and improvement. We have collected satellite observations and model forecasts in the Atlantic Basin and the East Pacific for the hurricane seasons since 2010 and supported the NASA Airborne Campaigns for Hurricane Study such as the Genesis and Rapid Intensification Processes (GRIP) in 2010 and the Hurricane and Severe Storm Sentinel (HS3) from 2012 to 2014.

To enable the direct inter-comparisons of the satellite observations and the model forecasts, the TCIS was integrated with the NASA Earth Observing System Simulator Suite (NEOS3) to produce synthetic observations (e.g. simulated passive microwave brightness temperatures) from a number of operational hurricane forecast models (HWRF and GFS). An automated process was developed to trigger NEOS3 simulations via web services given the location and time of satellite observations, monitor the progress of the NEOS3 simulations, display the synthetic observation and ingest them into the TCIS database when they are done. In addition, three analysis tools, the joint PDF analysis of the brightness temperatures, ARCHER for finding the storm-center and the storm organization and the Wave Number Analysis tool for storm asymmetry and morphology analysis were integrated into TCIS to provide statistical and structural analysis on both observed and synthetic data. Interactive tools were built in the TCIS visualization system to allow the spatial and temporal selections of the datasets, the invocation of the tools with user specified parameters, and the display and the delivery of the results.

In this presentation, we will describe the key enabling technologies behind the design of the TCIS interactive data portal and analysis tools, including the spatial database technology for the representation and query of the level 2 satellite data, the automatic process flow using web services, the interactive user interface using the Google Earth API, and a common and expandable Python wrapper to invoke the analysis tools.