B41K-0211:
Dynamic Pulse-Driven Flowering Phenology in a Semiarid Shrubland

Thursday, 18 December 2014
Natasha Krell1, Shirley A Papuga2, Evan L Kipnis3 and Krystine Nelson2, (1)College of the Atlantic, Bar Harbor, ME, United States, (2)University of Arizona, Tucson, AZ, United States, (3)University of Wyoming, Laramie, WY, United States
Abstract:
Elevated springtime temperature has been convincingly linked to an increasingly earlier onset of phenological activity. Studies highlighting this phenomenon have generally been conducted in ecosystems where energy is the primary limiting factor. Importantly, phenological studies in semiarid ecosystems where water is the major limiting factor are rare. In semiarid ecosystems, the timing of phenological activity is also highly sensitive to discrete moisture pulses from infrequent precipitation events. The objective of this study is to identify the triggers of flowering phenology in a semiarid creosotebush-dominated ecosystem. Creosotebush (Larrea tridentata) is a repeat-flowering evergreen shrub that is the dominant species in three of the North American deserts. We present results from six years of daily meteorological and phenological data collected within the Santa Rita Experimental Range in southern Arizona. Our site is equipped with an eddy covariance tower providing estimates of water and carbon fluxes and associated meteorological variables including precipitation and soil moisture at multiple depths. Additionally, three digital cameras distributed within the footprint of the eddy provide daily images of phenological activity. Our results highlight substantial interannual variability in flowering phenology, both in spring and summer flowering. We show that spring flowering activity tends to be associated with energy triggers (e.g. temperature, growing degree days), whereas summer flowering activity tends to be associated with moisture triggers (e.g. large precipitation events, deep soil moisture). Our study suggests that changes in frequency and duration of precipitation events will impact timing of phenological activity resulting in important consequences for vegetation dynamics and pollinator behavior.