H21B-0739:
Evaluation of Water-Mineral Interaction Using Microfluidic Tests with Thin Sections
H21B-0739:
Evaluation of Water-Mineral Interaction Using Microfluidic Tests with Thin Sections
Tuesday, 16 December 2014
Abstract:
For the geological disposal of radioactive wastes, geological settings and groundwater conditions are significantly important because of their effects on a radionuclide migration. One of the preferred host rocks for the radioactive waste disposal is crystalline rock. Fractures in crystalline rocks are main fluid pathways. Groundwater reacts with fracture filling minerals in fracture zones, resulting in physicochemical changes in the minerals and groundwater. In this study, fracture filling mineral-groundwater interactions were investigated by conducting microfluidic tests using thin sections at various conditions (i.e., fluid chemistry and flow rate). Groundwater and rock core samples collected from the KAERI Underground Research Tunnel (KURT) located in the Korea Atomic Energy Research Institute (KAERI) were used in this study. Dominant bedrock is two-mica granite, which contains both biotite and muscovite. Secondary minerals (e.g., chlorite, calcite and clay minerals) occur in fracture and alteration zones. In nature, water-mineral interactions generally take long time. Microfluidic tests were conducted to simulate water-mineral interactions in shorter time with smaller scale. Thin sections of fracture filling minerals, minerals from alteration zones, and natural and synthetic groundwater samples were used for the microfluidic tests. Results showed that water-mineral interactions at various conditions caused changes in groundwater chemistry, dissolution of minerals, precipitation of secondary minerals, and formation of colloids, which can affect radionuclide migration. In addition, the fluid chemistry and flow rate affected characteristics of water-rock interactions.