A11M-05:
Cloud Formation Potential of Biomass Burning Aerosol Surrogate-Particles Chemically Aged by OH
Monday, 15 December 2014: 9:12 AM
Jonathan Hall Slade1, Ryan M Thalman2, Jian Wang2, Zhuo-Qun Li1 and Daniel Alexander Knopf1, (1)Stony Brook University, Institute for Terrestrial and Planetary Atmospheres / School of Marine and Atmospheric Sciences, Stony Brook, NY, United States, (2)Brookhaven Natl Lab, Upton, NY, United States
Abstract:
Heterogeneous or multiphase reactions between trace gases such as OH and atmospheric aerosol can influence physicochemical properties of the particles including composition, morphology and lifetime. In this work, the cloud condensation nuclei (CCN) activity of laboratory-generated biomass burning aerosol (BBA) exposed to OH radicals is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type and OH exposure ([OH]×time) using a CCN counter coupled to a custom-built aerosol flow reactor (AFR). The composition of particles collected by a micro-orifice uniform deposit impactor (MOUDI) first subjected to different OH exposures is analyzed by Raman and scanning transmission X-ray microscopy coupled with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative compounds found in BBA that have different hygroscopicity, chemical functionalities, and reactivity with OH radicals. BBA surrogate-particles are generated following atomization of aqueous solutions with mass ratios LEV:MNC:KS of 1:0:0, 0:1:0, 0:0:1, 1:1:0, 0:1:1, 1:0:1, 1:1:1, and 1:0.03:0.3. OH radicals are generated in the AFR following photolysis of O3 in the presence of H2O using a variable intensity ultra-violet (UV) lamp, which allows equivalent atmospheric OH exposures from days to weeks. In addition, we investigate how κ changes i) in response to varying [O3] with and without OH, and ii) at a fixed OH exposure while varying RH. The impact of OH exposure on the CCN activity of BBA will be presented and its atmospheric implications will be discussed.