V43E-4938:
Impacts of winds on volcanic plumes – Do crossflows challenge the Morton, Turner and Taylor entrainment assumptions?

Thursday, 18 December 2014
Thomas Jacques Aubry, University of British Columbia, Earth, Ocean and Atmospheric Sciences, Vancouver, BC, Canada, Mark Jellinek, University of British Columbia, Vancouver, BC, Canada and Guillaume Carazzo, Institut de Physique du Globe de Paris, Paris, France
Abstract:
Volcanic plumes rising into Earth’s atmosphere are influenced strongly by tropospheric and stratospheric winds. In the absence of wind effects, Morton, Taylor and Turner (MTT, 1956) used a similarity theory to show that the maximum height for these flows is governed mostly by the atmospheric stratification and the buoyancy flux at the vent. Crucially, in developing this theory MTT introduced the “entrainment hypothesis” in which the rate of entrainment of atmospheric air by the large eddies forming at the edge of the plume is proportional to some bulk velocity. In the presence of wind a key question is whether the additional stirring deforms eddies sufficiently to alter their mixing properties. In particular, under what conditions will wind effects enhance or reduce entrainment? Can these effects be captured in a modified form of the MTT similarity theory or is a new theory required?

We use an extensive set of experiments on wind-forced turbulent plumes in order to overcome the restricted dynamical conditions explored in previous experimental studies. We introduce a new regime parameter allowing to quantitatively separate three distinct plume regimes. Remarkably, we show that for reasonable conditions on Earth, the major effects of wind can still be captured by a modified scaling law derived from the self-similar theory of MTT, with an entrainment rate including the contributions of wind. However, analysis of the turbulence motions in our experiments shows that even weak winds introduce large asymmetries in the structure of entraining eddies. Our successful application of a mean entrainment rate at the plume edge and a modified MTT similarity theory is, thus, surprising. Does this apparent contradiction simply reveal the way turbulent instabilities driven by wind manifest themselves?