Mid-late Holocene Reef Growth and Sedimentation History at Inshore Fringing Reefs in the Central Great Barrier Reef, Australia

Monday, 15 December 2014: 3:25 PM
Emma Ryan1, Scott Smithers1, Stephen Lewis1, Jian-Xin Zhao2 and Tara Clark2, (1)James Cook University, Townsville, Australia, (2)University of Queensland, St Lucia, Australia
Inshore coral reefs of Australia’s Great Barrier Reef (GBR) are threatened by terrestrial sediment loads that are argued to have increased by five to six times since coastal catchments were settled by Europeans in the mid-1850s. Nutrient and contaminant delivery to the inshore GBR has also increased over this period. However, direct evidence that European colonisation has changed the ecology of inshore reefs on the GBR remains limited, partly due to a lack of baseline historical data on coral reef growth. Coral reefs have been growing in inshore areas of the GBR since 6 or 7 ky BP, and have experienced natural fluctuations in terrestrial sediment loads over this period. For example, floods associated with episodic cyclones and major rainfall events often deliver pulses of sediment, especially if they follow prolonged dry spells. To better understand this history of sediment influx and reef development, we have examined in detail the chronostratigraphy of several inshore GBR reefs that have grown since the mid-Holocene. Here, we report on eight percussion cores collected at Bramston Reef (148°15’E, 20°03’S). Two cores terminate in the pre-Holocene substrate and therefore capture the entire Holocene sequence of both reef framework and terrigenous sediment matrix. Results from detailed core analyses indicate variable sedimentation patterns throughout the period of reef development. Furthermore, reef ecological condition and variability through the mid-late Holocene is described using palaeoecological analyses. We explore the impacts of sedimentation variability on reef growth and ecology, and compare reef ecological condition pre- and post-European colonisation.