S31A-4375:
Monitoring a CO2 plume using time-lapse 3D magnetotellurics, DC resistivity, and induced polarization

Wednesday, 17 December 2014
Esteban Bowles-martinez, Adam Schultz and Paul Vincent, Oregon State University, Corvallis, OR, United States
Abstract:
When CO2 is injected into a deep saline aquifer, the combination of fluid displacement and chemical interaction with groundwater and minerals results in changes to the electrical properties of the storage formation. Geophysical methods that are sensitive to the electrical resistivity and chargeability of the rocks and fluids are used to monitor a modeled CO2 plume. The arrival of supercritical CO2 appears as a resistive pulse as the CO2 displaces water while rising buoyantly. Groundwater becomes carbonated and undergoes a rapid drop in pH. Formation conductivity increases as acidic fluid mobilizes ions in the surrounding rock. A surge of increased conductivity is seen at the plume front as easily-mobilized ions enter the fluid. As the injection proceeds and groundwater flows, this high-conductivity plume front migrates, leaving behind an aquifer largely depleted of highly-mobile ions, with only slightly elevated conductivity. Meanwhile, the dissolution of minerals reduces surface area along the fluid-mineral interface. This causes pore throat widening and reduction of sites where electric charge can build up, thereby reducing the polarizability in the parts of the formation that have encountered the plume. This study looks at monitoring methods that are sensitive to all of these changes in electrical properties at various depths within the earth. These methods include magnetotellurics (MT) and combined DC resistivity and induced polarization (IP). MT is useful for showing large-scale structure using an array that is moveable to cover an arbitrarily large area as the plume expands far beyond initial monitoring locations. MT also allows for phase tensor analysis to clearly show deep resistivity gradients and changes in dimensionality. The active-source nature of DC and IP makes them effective at clearly showing the plume's extent in the region within a few km of the injection well. All methods are modeled in 3D using the planned Kevin Dome carbon storage site in northern Montana as the geologic setting. This site’s location on open prairie affords the use of a novel electrode array that simplifies the field logistics for efficient collection of 3D MT and DC/IP data.