Equivalent magnetization over the World's Ocean

Tuesday, 16 December 2014
Jerome Dyment1, Yujin Choi1, Mohamed Hamoudi2, Thebault Erwan1 and Vincent Lesur3, (1)Institut de Physique du Globe de Paris, Paris, France, (2)USTHB, Algiers, Algeria, (3)Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany
As a by-product of our recent work to build a candidate model over the oceans for the World Digital Magnetic Anomaly Map (WDMAM) version 2, we derived global distributions of the equivalent magnetization in oceanic domains.

In a first step, we use classic point source forward modeling on a spherical Earth to build a forward model of the marine magnetic anomalies at sea-surface. We estimate magnetization vectors using the age map of the ocean floor, the relative plate motions, the apparent polar wander path for Africa, and a geomagnetic reversal time scale. As magnetized source geometry, we assume 1 km-thick layer bearing a 10 A/m magnetization following the topography of the oceanic basement as defined by the bathymetry and sedimentary thickness. Adding a present-day geomagnetic field model allows the computation of our initial magnetic anomaly model.

In a second step, we adjust this model to the existing marine magnetic anomaly data, in order to make it consistent with these data. To do so, we extract synthetic magnetic along the ship tracks for which real data are available and we compare quantitatively the measured and computed anomalies on 100, 200 or 400 km-long sliding windows (depending the spreading rate). Among the possible comparison criteria, we discard the maximal range - too dependent on local values - and the correlation and coherency - the geographical adjustment between model and data being not accurate enough - to favor the standard deviation around the mean value. The ratio between the standard deviations of data and model on each sliding window represent an estimate of the magnetization ratio causing the anomalies, which we interpolate to adjust the initial magnetic anomaly model to the data and therefore compute a final model to be included in our WDMAM candidate over the oceanic regions lacking data. The above ratio, after division by the magnetization of 10 A/m used in the model, represents an estimate of the equivalent magnetization under the considered magnetized source geometry.

The resulting distributions of equivalent magnetization are discussed in terms of mid-ocean ridges, presence of hotspots and oceanic plateaus, and the age of the oceanic lithosphere. Global marine magnetic data sets and models represent a useful tool to assess first order magnetic properties of the oceanic lithosphere.