H23B-0870:
Apparent Anisotropic Diffusion of SF6 in a Deep Arid Unsaturated Zone
Tuesday, 16 December 2014
Christopher T Green1, Michelle A Walvoord2, Brian J Andraski3, Robert G Striegl4 and David A Stonestrom1, (1)USGS, Baltimore, MD, United States, (2)USGS, Denver, CO, United States, (3)USGS, Carson City, NV, United States, (4)USGS, Boulder, CO, United States
Abstract:
Gas transport in the unsaturated zone affects contaminant dispersal, remediation, interpretation of groundwater travel times from atmospheric tracers, and mass-budgets of environmentally important gases. Although deep unsaturated zone transport of gases is commonly treated as dominated by Fickian diffusion, previous observations at the Amargosa Desert Research Site have shown that the transport rates of various gas phase contaminants are faster than expected from standard models of diffusive transport. In this study, we use a multi-model approach to analyze results of a gas-tracer (SF6) test to clarify factors affecting gas transport in a deep unsaturated zone. Thirteen separate models with distinct diffusivity structures were calibrated to the tracer-test data. Models were compared on the basis of Akaike Information Criteria estimates of posterior model probability. The greatest posterior probability occurred for a model with significant anisotropy of diffusivity in addition to varying apparent diffusivity among vertically distributed sampling locations. Some horizontal diffusivities were greater than expected for purely diffusive transport, with values approaching free-air diffusivity (tortuosity ≈ 0.6 to 1). The magnitudes of the high apparent diffusivities were consistent with advective oscillations propagating through unsaturated-zone strata based on an analysis of barometric and unsaturated-zone air pressure time series. These results indicate that point source gases in layered unsaturated zones can spread laterally more quickly, and produce higher peak concentrations, than predicted by isotropic Fickian diffusion models.