A13I-3291:
Heterogeneous OH Oxidation of Two Structure Isomers of Dimethylsuccinic Acid Aerosol: Reactivity and Oxidation Products

Monday, 15 December 2014
Man Nin Chan1, Chiu Tung Cheng1 and Kevin R Wilson2, (1)Chinese University of Hong Kong, Hong Kong, Hong Kong, (2)Lawrence Berkeley National Laboratory, Berkeley, CA, United States
Abstract:
Organic aerosol contribute a significant mass fraction of ambient aerosol carbon and can continuously undergo oxidation by colliding with gas phase OH radicals. Although heterogeneous oxidation plays a significant role in the chemical transformation of organic aerosol, the effect of molecular structure on the reactivity and oxidation products remains unclear. We investigate the effect of branched methyl groups on the reactivity of two dimethylsuccinic acids (2,2-dimethylsuccinic acid (2,2-DMSA) and 2,3-dimethylsuccinic acid (2,3-DMSA)) toward gas phase OH radicals in an atmospheric pressure aerosol flow tube reactor. The oxidation products formed upon oxidation is characterized in real time by the Direct Analysis in Real Time (DART), an ambient soft ionization source. The 2,2-DMSA and 2,3-DMSA are structural isomers with the same oxidation state (OSC = -0.33) and carbon number (NC = 6), but different branching characteristics (2,2-DMSA has one secondary carbon and 2,3-DMSA has two tertiary carbons). The difference in molecular distribution of oxidation products observed in these two structural isomers would allow one to assess the sensitivity of kinetics and chemistry to the position of branched methyl group in the DMSA upon oxidation.

We observe that the reactivity of 2,3-DMSA toward OH radicals is about 2 times faster than that of 2,2-DMSA. This difference in OH reactivity may attribute to the stability of the carbon-centered radical generated after hydrogen abstraction because an alkyl radical formed from the hydrogen abstraction on a tertiary carbon in 2,3-DMSA is more stable than on a secondary carbon in 2,2-DMSA. For both 2,2-DMSA and 2,3-DMSA, the molecular distribution and evolution of oxidation products is characterized by a predominance of functionalization products at the early oxidation stages. When the oxidation further proceeds, the fragmentation becomes more favorable and the oxidation mainly leads to the reduction of the carbon chain length through the carbon-carbon bond cleavage. We provide molecular information to access how the position of the branched methyl groups plays a role in determining the kinetic and chemistry and to support the recent hypothesis that the relationship between average aerosol elemental composition (e.g., OSC) and oxidation pathways is not always unique.