DI53B-4369:
A Preliminary Study on the Lithosphere-Asthenosphere Boundary beneath the South China Sea
Friday, 19 December 2014
Timothy Ting-Yu Lee and Chin-Wu Chen, National Taiwan University, Taipei, Taiwan
Abstract:
The lithosphere-asthenosphere boundary (LAB) is an important boundary at which the rigid lithosphere translates coherently upon the viscous asthenosphere. New observations have been made on LAB through detailed seismic analysis, especially that from receiver functions. Previous studies have found LAB depth varies significantly, systematically getting shallower from continental to oceanic lithosphere. In smaller scale, the depth and sharpness of LAB also differ from region to region, suggesting the effects of a combination of thermal and compositional origins. In this study, we investigate the LAB beneath the South China Sea, a region poorly instrumented that conventional seismological are less effective and impractical. The South China Sea is on the Sunda Plate, which is considered to be once the southeastern part of the Eurasia Plate before separating with a distinct moving direction from that of India-Eurasia continental collision. The South China Sea is Phanerozoic in age and continental in nature, but the striped magnetic anomalies observed from the sea floor have suggested multiple spreading events since early Miocene, indicating the presence of latter formed oceanic lithosphere. Previous seismic studies of this region focused mainly on shallow basin structure pertaining to petroleum exploration. The lithospheric structure, particularly the LAB, remains elusive, while it provides important insight into the complex tectonic history in this region. To image the LAB, we use the precursor of SS phase. The precursor bounces at the LAB discontinuity at depth would appear before the SS and presents a signal amenable to analysis for depth and properties. We collect seismic waveform data recorded mainly at Japan and Cocos Islands of corresponding teleseismic events from Southern Sumatera and Japan, with SS and potential precursors bouncing beneath the South China Sea. We employ an analysis technique, velocity spectral analysis (vespagrams), to identify precursory arrivals. The fourth root vespagrams are generated to verify the arrival times and slowness of the precursors that match the predictions from velocity model ak135. Through vespagrams analysis, the precursors of interest are separated from the interfering energy, such as SKiKs, and can be further migrated to depth to indicate the location of LAB.