SM13E-4207:
Effects of a Guide Field on the Larmor Electric Field in Collisionless Asymmetric Reconnection
Monday, 15 December 2014
Kittipat Malakit1, Surapat Ek-In1, David J Ruffolo1, Michael A Shay2 and Paul Cassak3, (1)Mahidol University, Bangkok, Thailand, (2)University of Delaware, Newark, DE, United States, (3)West Virginia University, Morgantown, WV, United States
Abstract:
Recently it has been pointed out that when the inflow conditions of magnetic reconnection are asymmetric, a new in-plane electric field can arise from the physics of finite ion Larmor radius, called the Larmor electric field. It is located next to the Hall electric field structure, making it a potential indicator of proximity to the diffusion region. However, the properties of the Larmor electric field have not previously been explored for the case of a nonzero guide field, which could occur for many reconnection sites, including the day-side magnetopause. In this study, we therefore further explore the properties of the Larmor electric field by adding guide fields with different strengths into our simulations. The results show that the width of the Larmor electric field structure will be smaller, but the strength of the field will be stronger as the guide field increases, consistent with what we expect from the existing theory. Moreover, we show that in the region where the Larmor electric field occurs, there also appears an electron anisotropy. The widths of the electron anisotropy and Larmor electric field structures are found to be similar, suggesting that observing the combination of these two signatures provides a useful indicator of proximity to a reconnection site. Partially supported by a Mahidol University Postdoctoral Fellowship and the Thailand Research Fund. This research was supported by the postdoctoral research sponsorship of Mahidol University (K. M.), the Thailand Research Fund (D. R.), NSF Grants No. ATM-0645271 (M. A. S.) and No. AGS-0953463 (P.A. C.), NASA Grants No. NNX08A083G—MMS IDS, No. NNX11AD69G, and No. NNX13AD72G(M. A. S.).