Transpiration of shrub species, Alnus firma under changing atmospheric environments in montane area, Japan

Wednesday, 17 December 2014
Yoshiyuki Miyazawa, Kyushu University, Fukuoka, Japan, Atsushi Maruyama, NARO National Agriculture and Food Research Organization, Ibaraki, Japan and Akio Inoue, Prefectural University of Kumamoto, Japan, Kumamoto, Japan
In the large caldera of Mt. Aso in Japan, grasslands have been traditionally managed by the farmers. Due to changes in the social structure of the region, a large area of the grassland has been abandoned and was invaded by the shrubs with different hydrological and ecophysiological traits. Ecophysiological traits and their responses to seasonally changing environments are fundamental to project the transpiration rates under changing air and soil water environments, but less is understood. We measured the tree- and leaf-level ecophysiological traits of a shrub, Alnus firma in montane region where both rainfall and soil water content drastically changes seasonally. Sap flux reached the annual peak in evaporative summer (July-August) both in 2013 and 2014, although the duration was limited within a short period due to the prolonged rainy season before summer (2014) and rapid decrease in the air vapor pressure deficit (D) in late summer. Leaf ecophysiological traits in close relationship with gas exchange showed modest seasonal changes and the values were kept at relatively high levels typical in plants with nitrogen fixation under nutrient-poor environments. Stomatal conductance, which was measured at leaf-level measurements and sap flux measurements, showed responses to D, which coincided with the theoretical response for isohydric leaves. A multilayer model, which estimates stand-level transpiration by scaling up the leaf-level data, successfully captured the temporal trends in sap flux, suggesting that major processes were incorporated. Thus, ecophysiological traits of A. firma were characterized by the absence of responses to seasonally changing environments and the transpiration rate was the function of the interannually variable environmental conditions.