OS24A-08:
Linking the tectonic evolution with fluid history in magma-poor rifted margins: tracking mantle- and continental crust-related fluids

Tuesday, 16 December 2014: 5:45 PM
Victor Hugo Guimarães Pinto, Gianreto Manatschal and Anne-Marie Karpoff, Institut de Physique du Globe Strasbourg, Strasbourg Cedex, France
Abstract:
The thinning of the crust and the exhumation of subcontinental mantle is accompanied by a series of extensional detachment faults. Exhumation of mantle and crustal rocks is intimately related to percolation of fluids along detachment faults leading to changes in mineralogy and chemistry of the mantle, crustal and sedimentary rocks.

Field observation, analytical methods, refraction/reflection and well-core data, allowed us to investigate the role of fluids in the Iberian margin and former Alpine Tethys distal margins and the Pyrenees rifted system. In the continental crust, fluid-rock interaction leads to saussuritization that produces Si and Ca enriched fluids found in forms of veins along the fault zone. In the zone of exhumed mantle, large amounts of water are absorbed in the first 5-6 km of serpentinized mantle, which has the counter-effect of depleting the mantle of elements (e.g., Si, Ca, Mg, Fe, Mn, Ni and Cr) forming mantle-related fluids.

Using Cr-Ni-V and Fe-Mn as tracers, we show that in the distal margin, mantle-related fluids used detachment faults as pathways and interacted with the overlying crust, the sedimentary basin and the seawater, while further inward parts of the margin, continental crust-related fluids enriched in Si and Ca impregnated the fault zone and may have affected the sedimentary basin. The overall observations and results enable us to show when, where and how these interactions occurred during the formation of the rifted margin. In a first stage, continental crust-related fluids dominated the rifted systems. During the second stage, mantle-related fluids affected the overlying syn-tectonic sediments through direct migration along detachment faults at the future distal margin. In a third stage, these fluids reached the seafloor, “polluted” the seawater and were absorbed by post-tectonic sediments.

We conclude that a significant amount of serpentinization occurred underneath the thinned continental crust, that the mantle-related fluids might have modified the chemical composition of the sediments and seawater. We propose that the chemical signature of serpentinization that occurs during the mantle exhumation is recorded in the sediments and may serve as a proxy to date serpentinization and mantle exhumation in present day magma-poor rifted margins.