T54A-04:
Magmatic Versus Amagmatic Rifting in the East African Rift System from Pn and Sn Tomography

Friday, 19 December 2014: 4:45 PM
John Paul O'Donnell, Penn State University, State College, PA, United States and Andrew Nyblade, Penn St Univ, University Park, PA, United States
Abstract:
Geodynamic models of rifting currently rely on the mechanism of hot mantle upwelling and decompressional melting to weaken lithospheric rock to the degree that rifting can initiate. However, many rift segments worldwide are apparently amagmatic. The East African Rift System is a prime example, with large sections of the system subaerially amagmatic. We seek to address the question of whether these apparently amagmatic rift segments merely lack a surficial expression of magmatism which exists at depth, or whether rifting is genuinely amagmatic. Based on regional earthquakes recorded by the Tanzania Broadband Seismic Experiment, the Kenya Broadband Seismic Experiment, the AfricaArray East African Seismic Experiment and several permanent GSN stations, we probe for uppermost mantle melt signatures along the East African Rift System using P- and S-wave speed ratios derived from Pn and Sn tomography. Pn- and Sn-velocity models, and their ratio which can be diagnostic of the presence of fluids, will be presented.