T51A-4575:
Permeability of Silty Claystone and Turbidite Samples from IODP Expedition 348, Hole C0002P, Nankai Trough Accretionary Prism

Friday, 19 December 2014
Chen Song and Michael Underwood, University of Missouri Columbia, Department of Geological Sciences, Columbia, MO, United States
Abstract:
One of the main objectives of IODP Expedition 348 was to characterize the variations of lithology and structure with depth in the interior of the Nankai Trough accretionary complex beneath the Kumano forearc basin (offshore SW Japan). Six cores were recovered from Hole C0002P between 2163 and 2218 mbsf. Four whole-round (WR) specimens from depths of 2174.98 to 2209.64 mbsf were tested for constant-flow permeability with a focus on thin interbeds of silty claystone and fine-grained turbidites. Samples are from lithostratigraphic Unit V (accreted trench or Shikoku Basin hemipelagic deposits). Coarser interbeds are important for assessing the prospects of flow through stratigraphic conduits. Our primary objective is to better understand how hydrogeologic properties of different lithologies respond to deformation within the accretionary prism.

Equipment for permeability tests consists of a withdrawal-infuse syringe pump to simultaneously inject and extract pore fluid from the top and bottom of the specimen to generate hydraulic head difference. Specimens were trimmed for tests in both vertical direction (along-core) and horizontal direction (cross-core) with the diameter of 3.8 cm (1.5 in). The isotropic effective stress is set at 0.55 MPa. The WR specimens are heterogeneous. The major lithology is silty claystone to fine-grained silty claystone. Some intervals contain thin (~1.3 cm) oblique sandy layers and black organic bands. Bedding is steep to vertical (~70-80˚). One goal is to determine how this lithologic variability affects the anisotropy of permeability.

Environmental SEM was used to image the cores (in multiple directions) to evaluate the relation between sediment microstructure and anisotropy of permeability.