GC51C-0430:
A climate emulator for coastal flooding events

Friday, 19 December 2014
Ana Cristina Rueda Zamora, Fernando Javier Méndez Incera, Paula Camus and Antonio Tomas, Enviromental Hydraulics Institute of Cantabria, Santander, Spain
Abstract:
The evaluation of coastal flooding requires the definition of the multivariate marine climate conditions (wave height, wave period, wave direction, wind, surge levels). Historical reanalysis databases are a valuable information source. However, the limited time period covered implies uncertainty in the statistical characterization of extremes. Besides, downscaling is needed to extend data to climate change scenarios or long-term historical periods, or even to understand the interannual variability. A statistical downscaling approach is adopted due to its low computational cost. The relationship between large-scale atmospheric variables (predictor) and local marine climate variables (predictand) is established by means of a physical division of the predictand based on weather types. The multivariate dependence structure of the predictand (extreme events) is introduced linking the independent marginal distributions of the variables by a probabilistic copula regression. Therefore, the climate emulator is a stochastic hybrid model with the following steps: 1) Collecting historical data for the predictor (atmospheric variables) and predictand (sea state parameters, storm-surge); 2) Predictor definition, i.e. using ESTELA method in the case of wave generation characteristics (Pérez et al., 2014a); 3) Defining the most appropriate statistical model (distribution modeling based on weather-type); 4) Stochastic simulation of the present climate; 5) Marine climate downscaling under climate change scenarios (selecting the best GCMs from CMIP5, Pérez et al., 2014b).

References:

Perez, J., Menéndez, M., Méndez, F.J., Losada, I.J. (2014a). Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region, Climate Dynamics, DOI 10.1007/s00382-014-2078-8.

Perez, J., Menéndez, M., Méndez, F.J., Losada, I.J. (2014b) ESTELA: A method for evaluating the source and travel-time of the wave energy reaching a local area. Ocean Dynamics, DOI 10.1007/s10236-014-0740-7.