H24E-06:
Hydration State and Aqueous Phase Connectivity Shape Microbial Dispersal Rates in Unsaturated Angular Pore Networks
Tuesday, 16 December 2014: 5:15 PM
Ali Ebrahimi and Dani Or, ETH Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
Abstract:
The limited dispersal of self-propelled microorganisms and constrained nutrient transport in unsaturated soils are considered key factors in the promotion and maintenance of soil microbial diversity. Despite the importance of microbial dispersal to biogeochemical and ecological functioning of soil, little is known about how pore spaces and hydration conditions affect dispersal ranges and rates of motile bacteria. To address these questions quantitatively, we developed a novel 3-D pore network model (PNM) composed of triangular bonds connected to cubic (volumeless) bonds to mimic the salient geometrical and physical properties of natural pore spaces. Within this abstracted physical domain we employed individual based models for motile microorganisms that are capable of motion, nutrient consumption, growth and cell division. We focused on dispersal rates through the network as a function of hydration conditions through its impact on aqueous phase fragmentation that suppress nutrient diffusion (hence growth rates) and dispersal rates in good agreement with limited experimental data. Chemotactically-biased mean travel rates of microbial cells across the saturated PNM was ~3 mm/hr and decreased exponentially to 0.45 mm/hr for matric potential of (at dispersal practically ceases and cells are pinned by capillary forces). Individual-based results were upscaled to describe population scale dispersal rates, and PNM predictions considering different microbial cell sizes were in good agreement with experimental results for unsaturated soils. The role of convection for most unsaturated conditions was negligible relative to self-motility highlighting the need to constrain continuum models with respect to cell size and motility to imporve predictions of transport of motile microorganisms. The modeling platform confirms universal predictions based on percolation theory for the onset of aqueous phase fragmentation that limit dispersal and provide niches essential for species coexistence in soil pore spaces.