V11B-4707:
Thin-skinned Mass-wasting Responsible for Rapid, Edifice-wide Deformation at Arenal Volcano

Monday, 15 December 2014
Susanna K Ebmeier1, Juliet Biggs1, Cyril Muller1,2 and Geoffroy Avard2, (1)University of Bristol, Bristol, United Kingdom, (2)OVSICORI-UNA, Heredia, Costa Rica
Abstract:
Volcanic edifices are built rapidly, at rates far exceeding those of erosion. The resulting mechanical failure of the edifices of both active and quiescent volcanoes can result in hazards on a range of scales, from rockfall to sector collapse. The stability of a volcanic edifice depends on the ratio of its exogenous growth to mass loss due to erosion, deformation and mass wasting. Geodetic measurements of edifice spreading have mostly been associated with local zones of extension at island volcanoes and relatively few observations have been made at continental stratovolcanoes.

 We present measurements of displacement and surface property changes at Arenal, Costa Rica, a continental stratovolcano that stopped erupting in 2010 after almost 42 years of activity. High resolution TerraSAR-X data (2011-2013) have increased the area covered geodetically by ~40%, allowing us to make measurements of displacements close to Arenal’s summit for the first time. InSAR and intensity change observations provide evidence of frequent rockfalls and of shallow landslides (5-11 m thick, total volume = 1.9×107 m3 DRE). Rockfall and shallow translational landsliding have a stabilizing effect on Volcán Arenal’s edifice that reduces the potential for external triggering of slope failure. We map 16 shallow landslides (5-11 m depth, 4% of post-1968 deposits) and expect failure planes to be associated with layers of blocky debris and lava crust. Unstable material on Arenal's upper slopes is removed steadily, potentially reducing sensitivity to external triggers: the 2012 Nicoya Earthquake (Mw 7.6) had no measurable impact on the velocities of sliding units, but did result in an elevated area of rockfall. This demonstrates the importance of mass wasting for the stability of young volcanic edifices.