Shoreline changes at the mouths of the Mekong River delta over the last 50 years: fluctuating sediment supply and shoreline cells

Tuesday, 16 December 2014: 2:25 PM
Edward Anthony1, Manon Besset1, Guillaume Brunier1, Philippe Dussouillez1, Franck Dolique2, Van Lap Nguyen3 and Marc Goichot4, (1)CEREGE, Aix-en-Provence Cedex, France, (2)Université Antilles-Guyane, Schoelcher, Martinique, (3)Inst. Res. Geogr., VAST, Ho Chi Minh, Vietnam, (4)WWF, Ho Chi Minh, Vietnam
River delta shorelines may be characterized by complex patterns of sediment transport and sequestering at various timescales in response to changes in sediment supply, hydrodynamic conditions, and deltaic self-organization. While being good indicators of delta stability, these changes also have important coastal management and defence implications. These aspects are examined with reference to the mouths of the Mekong River delta, the world’s third largest delta, backbone of the Vietnamese economy and home to nearly 20 million people. We conducted an analysis of shoreline fluctuations over the last five decades using low-resolution Landsat (1973-2014), very high-resolution SPOT 5 (2003-2011) satellite imagery, topographic maps (1950, 1965), and field hydrodynamic and shoreline topographic measurements. The results show that the 250 km-long river-mouth sector of the delta shoreline has been characterized by overall accretion but with marked temporal and spatial variations. The temporal pattern is attributed to fluctuations in sediment supply due to both human activities and natural variations in catchment sediment loads (e.g., 2000-2003), and natural adjustments in delta-plain sediment storage and delivery to the coast. The spatial pattern is indicative of discrete sediment cells that may be a response to an overall decreasing sand supply, especially since 2003, following increasingly massive riverbed mining with concomitant losses in channel-bed sand. Field measurements show the prevalence of mesotidal bar-trough beaches characterized by sand migration to the southwest in response to energetic dry-season monsoon waves. Beaches underfed as a result of both wave-energy gradients and possible diminishing sand supply from the adjacent river mouths are eroded to feed accreting beaches. Understanding this cell pattern has important implications in terms of: (1) interpreting past patterns of shoreline translation involved in the construction of successive beach ridges that characterise the prograding mouths sector of the Mekong; (2) linking shoreline stability/instability with coastal sand supply by the Mekong River and the impacts of human activities on this supply; (3) shoreline management and defence planning in the critical sandy river-mouth sector of this densely populated delta.