B33F-0260:
Process Inference from High Frequency Temporal Variations in Dissolved Organic Carbon (DOC) Dynamics Across Nested Spatial Scales

Wednesday, 17 December 2014
Claire Tunaley, Doerthe Tetzlaff, Jason Scott Lessels and Chris Soulsby, University of Aberdeen, Aberdeen, United Kingdom
Abstract:
In order to understand aquatic ecosystem functioning it is critical to understand the processes that control the spatial and temporal variations in DOC. DOC concentrations are highly dynamic, however, our understanding at short, high frequency timescales is still limited. Optical sensors which act as a proxy for DOC provide the opportunity to investigate near-continuous DOC variations in order to understand the hydrological and biogeochemical processes that control concentrations at short temporal scales.

Here we present inferred 15 minute stream water DOC data for a 12 month period at three nested scales (1km2, 3km2 and 31km2) for the Bruntland Burn, a headwater catchment in NE Scotland. High frequency data were measured using FDOM and CDOM probes which work by measuring the fluorescent component and coloured component, respectively, of DOC when exposed to ultraviolet light. Both FDOM and CDOM were strongly correlated (r2 >0.8) with DOC allowing high frequency estimations. Results show the close coupling of DOC with discharge throughout the sampling period at all three spatial scales. However, analysis at the event scale highlights anticlockwise hysteresis relationships between DOC and discharge due to the delay in DOC being flushed from the increasingly large areas of peaty soils as saturation zones expand and increase hydrological connectivity. Lag times vary between events dependent on antecedent conditions. During a 10 year drought period in late summer 2013 it was apparent that very small changes in discharge on a 15 minute timescale result in high increases in DOC. This suggests transport limitation during this period where DOC builds up in the soil and is not flushed regularly, therefore any subsequent increase in discharge results in large DOC peaks. The high frequency sensors also reveal diurnal variability during summer months related to the photo-oxidation, evaporative and biological influences of DOC during the day. This relationship is less significant during the winter months.