OS53C-1059:
The non-transform discontinuity on the Central Indian Ridge at 11°S: The transtensional basin formation and hydrothermal activity

Friday, 19 December 2014
Sang Joon Pak, Hyun-Sub Kim, Juwon Son, Jonguk Kim, Jai-Woon Moon and Seung-Kyu Son, KIOST Korea Institute of Ocean Science and Technology, Ansan, South Korea
Abstract:
The bathymetric and magnetic survey, hydrocasting and seabed sampling have been carried out in the middle portion of the Central Indian Ridge (MCIR) between 7°S and 17°S. The MCIR constitutes six first-order segments and seven second-order segments with four non-transform discontinuities (NTDs) and twelve ocean core complexes (OCCs). These segments are characterized by asymmetric accretion that corresponds to about 70% of the surveyed MCIR segment. One of the outstanding NTD in the area is a basin like NTD3-1 at 11°S (50km in length) which strike at 035°, approximately 45° oblique in a clockwise direction to the orientation of two adjoining second-order segments. The hydrothermal activity is recognized at the tips of NTD3-1. No abyssal hills paralleling to basin-shape NTD3-1 are observed. Anomalous depth of the basin, lack of positive magnetic anomaly across the basin and rare seismic activities in the basin floor suggests that extensional tectonism with a sparse volcanism is the dominant process occurring along the NTD3-1. Based on the previous researches that the counterclockwise rotation of ridge is predominant in the area, the region of NTD3-1 largely accommodates shear strain by left-lateral sense motion and consequently forms a transtensional basin, i.e., a pull-apart basin. The strong and frequent hydrothermal plume signals, and highly tectonized rocks in both tips of the NTD3-1 are reflective of the dilation zones or tensional fractures accompanied by the pull-apart basin formation. It is the first identification of a pull-apart basin associated with hydrothermal activity in the Central Indian Ridge.