T43A-4673:
Multiple Generations of Faulting: A Kinematic Analysis of the Lagarfljót Region, Northeast Iceland

Thursday, 18 December 2014
Keegan Runnals, Jeffrey Alan Karson and Anthony J Fiorentino II, Syracuse University, Syracuse, NY, United States
Abstract:
The North American/Eurasian plate boundary in Iceland is structurally diverse with oblique rifts, volcanic fissure swarms, and transform zones. Lagarfljót is a lake located in the Tertiary flood basalts of East Iceland that range in age from ~7 to 3 Ma. The lake is approximately 50 km E of the actively spreading, NS-trending, Northern Rift Zone (NVZ), and occupies a northeast-trending depression in an area of strong NS lineaments. A flexure zone runs N-S across the southern part of the lake, and predates an angular unconformity in the regional lava pile. Exposures in cliffs along the lakeshore and stream cuts above unveil a series of dikes and faults that can be correlated with the lineaments, and indicate a complicated tectonic history. Fault zones are characterized by fault breccia, cataclasite and gouge with well-developed slickenlines and clear shear-sense indicators. Fault gouge in individual shear zones ranges from centimeters to meters in thickness. Cross cutting relationships define the relative ages of 2 families of structures, with both post-dating the flexure. The older generation of faults are NS-striking, dextral, strike-slip faults. These are cut by NE-striking, normal faults. The normal faults are almost exclusively located along or near the margins of large dikes or swarms of dikes ranging from 1 – 5 m wide. Displacements along individual normal faults range from centimeters up to 8 m. Some faults cut the lavas above the unconformity and locally rotated structures suggest that limited tilting of the lava pile occurred during faulting. These findings may be related to larger scale processes of propagation and relocation of the NVZ.