A53G-3294:
Vertical Air Motion Estimates from W-band Radar Doppler Spectra Observed during DYNAMO

Friday, 19 December 2014
Christopher R Williams1, Janet S. Gibson1 and Chris W Fairall2, (1)University of Colorado Boulder, Boulder, CO, United States, (2)NOAA Boulder, Boulder, CO, United States
Abstract:
During the DYNAMO field campaign, a vertically pointing NOAA W-band (94 GHz) radar was mounted on the R/V Revelle to sample a wide range of clouds from shallow warm clouds to high cirrus clouds. The Doppler velocity spectra often contained multiple peak structures. In warm clouds, multiple peaks were due to cloud droplets and drizzle droplets in the same radar pulse volume. And in rainfall beneath well-defined reflectivity dim-bands near the melting layer, the multiple peaks were due to Mie scattering signatures from raindrops larger than 1.6 mm.

This presentation will describe a method of identifying multiple peaks in Doppler spectra and then determining if the multiple peaks were due to cloud and drizzle droplets or due to large raindrops exciting a Mie scattering signature. In both cases, the multiple peak structure provides a signature to estimate vertical air motion. For spectra containing cloud droplets, the symmetric peak is a tracer used to estimate the air motion. For spectra with asymmetric shapes and large downward Doppler velocities, the Mie scattering notch is used to estimate the air motion. Examples of the retrieval procedure will be provided at the conference.