SA13A-3969:
Space Weather Prediction Error Bounding for Real-Time Ionospheric Threat Adaptation of GNSS Augmentation Systems

Monday, 15 December 2014
Jinsil Lee, Moonseok Yoon and Jiyun Lee, KAIST Korea Advanced Institute of Science and Technology, Daejeon, South Korea
Abstract:
Current Global Navigation Satellite Systems (GNSS) augmentation systems attempt to consider all possible ionospheric events in their correction computations of worst-case errors. This conservatism can be mitigated by subdividing anomalous conditions and using different values of ionospheric threat-model bounds for each class. A new concept of ‘real-time ionospheric threat adaptation’ that adjusts the threat model in real time instead of always using the same ‘worst-case’ model was introduced in my previous research. The concept utilizes predicted values of space weather indices for determining the corresponding threat model based on the pre-defined worst-case threat as a function of space weather indices.

Since space weather prediction is not reliable due to prediction errors, prediction errors are needed to be bounded to the required level of integrity of the system being supported. The previous research performed prediction error bounding using disturbance, storm time (Dst) index. The distribution of Dst prediction error over the 15-year data was bounded by applying ‘inflated-probability density function (pdf) Gaussian bounding’. Since the error distribution has thick and non-Gaussian tails, investigation on statistical distributions which properly describe heavy tails with less conservatism is required for the system performance. This paper suggests two potential approaches for improving space weather prediction error bounding. First, we suggest using different statistical models when fit the error distribution, such as the Laplacian distribution which has fat tails, and the folded Gaussian cumulative distribution function (cdf) distribution. Second approach is to bound the error distribution by segregating data based on the overall level of solar activity. Bounding errors using only solar minimum period data will have less uncertainty and it may allow the use of ‘solar cycle prediction’ provided by NASA when implementing to real-time threat adaptation. Lastly, we perform evaluation of the Ground-Based Augmentation System (GBAS) availability using adaptive ionospheric threat model by applying improved bounded prediction errors. This study would improve availability and reliability of GNSS augmentation systems against the uncertainty of space weather prediction.