Developing an Age Model for the Cryogenian: the South China perspective

Thursday, 18 December 2014: 11:20 AM
Daniel James Condon1, Maoyan Zhu2, Francis A Macdonald3 and Simon Tapster1, (1)British Geological Survey, NERC Isotope Geoscience Facilities, Nottinghamshire, United Kingdom, (2)Nanjing Institute of Geology and Palaeontology, Nanjing, China, (3)Harvard University, Cambridge, MA, United States
The Neoproterozoic stratigraphic record of South China contains distributed volcanic ash beds, which can be dated and used to provide a backbone for Cryogenian and Ediacaran ‘age models’. When integrated with geochemical and paleontological data, both locally and from other regions, these successions inform our understanding of environmental and biological change from these intervals. At present the South China stratigraphy provides the dates that best approximate the termination of the Marinoan glaciation (ca. 635 Ma, U-Pb single zircon isotope dilution1) from a dated volcanic ash bed that occurs in the cap carbonate sequence (Doushantuo Formation) which directly overlies the Nantuo Tillite (Marinoan glaciation equivalent). A number of other ash beds have been documented in both the Nantuo Tillite and throughout the Datangpo Formation (pre-Marinoan non-glacial succession) and have been variably dated using U-Pb microbeam and multi-grain isotope dilution studies2-4. These published data sets have produced dates that have uncertainties on the order of 4 Myr but are built upon single-analyses data points, which have uncertainties on the order of 10 Myr or greater thereby limiting their utility for assessing temporal relationship with other dated section. We present new U-Pb single zircon isotope dilution geochronology data from a suite of samples from the Datangpo, Nantuo and Doushantuo Formations. New dates from the base of the Datangpo Formation confirm a ca. 660 Ma end to the Sturtian glacial epoch, which is represented by underlying glacial deposits. Additional dates from ash beds from the Datangpo Formation and the lower Nantuo Tillite will refine the duration of the Cryogenian non-glacial interlude and Marinoan glaciation as recorded in South China. Combined with published data from Namibia, Australia and Canada, these new data will permit the development of a more highly resolved age model for the Cryogenian, enabling estimation of duration and synchronicity of proxy records. They will also provide further tests and input data for numerical models that seek to simulate Cryogenian climate drivers and responses.

1. D. Condon et al., (2005) Science308, 95; 2. C. M. Zhou et al., (2004) Geology32, 437; 3. S. Zhang, et al., (2008) Terra Nova20, 289; 4. S. Zhang et al., (2005) Geology 33, 473