U34A-06:
Connecting Wastewater Injection and Seismicity through Pore Pressure

Wednesday, 17 December 2014: 5:40 PM
Shemin Ge1, Matthew Weingarten1, Mark Austin Person2 and Barbara A Bekins3, (1)University of Colorado, Boulder, CO, United States, (2)NM Tech, Socorro, NM, United States, (3)USGS California Water Science Center Menlo Park, Menlo Park, CA, United States
Abstract:
Increased seismicity in recent years in some geologically quiescent regions in the US has been linked to wastewater injection associated with oil and gas production. While seismicity in some cases appears to be well correlated with injection activities, in many other injection locations no seismicity has been reported. How pore pressures generated from injection propagate spatially and evolve temporally is likely a key control in inducing earthquakes, providing a physical linkage between injection activity and seismicity occurrence. Yet, the linkage remains controversial and inconclusive, in spite of the basic physics of pore pressure propagation being well established. This study aims at better understanding the physical processes of pore pressure propagation around injection sites and identifying factors that are most likely contributors to induced seismicity.

Numerical modeling suggests that pore pressure increases in the Jones seismicity swarm northeast of Oklahoma City were primarily from several high rate injection wells. Preliminary analysis on injection and seismicity data from Greeley, Colorado also points to a potential pore pressure link between high injection rates and seismicity. Modeling of pore pressures in the Lake County, Ohio, illustrates that permeable faults in the crystalline basement could facilitate pore pressure propagation from injection in the basal aquifer and host earthquakes, which could explain the earthquakes that occurred in the mid-1980s. In many of the above examples, wastewater injection in basal aquifers promoted downward propagation of pore pressures into the crystalline basement.

In connecting injection and seismicity through pore pressure propagation, high rate injection wells and permeable basement faults are merging as important players contributing to induced seismicity. It is the intention of this study that findings like these would provide a scientific basis to inform future regulations and policies on wastewater injection.