OS14A-03:
Wave-current interaction in evolution of rip channel system
Abstract:
Current effects on waves (CEW) have been recognized to play an essential role in attenuating offshore extent of rip currents (e.g., Haas et al., 1999; Yu and Slinn, 2003; Weir et al., 2011). This mechanism is presumed to be responsible for morphological processes of sandy beaches. The present study aims at analyzing influence of CEW on the evolution of rip channel system due to deformation of an alongshore-uniform barred topography. We exploit a phase-averaged barotropic numerical model based on ROMS with an Eulerian-averaged vortex force formalism (McWilliams et al., 2004) coupled with a refraction wave model (ROMS-WEC; Uchiyama et al., 2009; 2010). An empirical total sediment load model of Soulsby and Van Rijn (1997) with a diffusive downslope transport effect (e.g., Garnier et al., 2008) is implemented for evaluating sediment transport and associated morphological evolution.The coupled, wave-current-sediment model successfully reproduces development of the alongshore periodic rip channel topography with normal incident offshore waves. The initial alongshore-uniform barred topography evolves into a rhythmic rip channel system through intrinsic instability triggered by a small disturbance. We then exhibit the rip current reduction by CEW on an immobile single barred beach with equally spaced rip channels. Among the other CEW such as the Doppler shift and wave set-down/up, wave refraction on currents is found to be most important in modifying the wavenumber field and breaker dissipation, leading to a systematic modulation in the diagnostic momentum balance. We further demonstrate that CEW has the first-order effect on the morphological processes where the resultant rip channel spacing is elongated 25-50% as compared to the case without CEW. In particular, CEW is crucial in widening the rip channel spacing, shoaling the rip channel in the surfzone, and shrinking submerged crescent mounds in the offshore beneath rip heads.