A51F-3098:
Shallow Convection along the Sea Breeze Front and its Interaction with Horizontal Convective Rolls and Convective Cells

Friday, 19 December 2014
Basit Ali Khan, Georgiy L Stenchikov and Yasser Abualnaja, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Abstract:

Shallow convection has been studied in the sea breeze frontal zone along the Arabian Red Sea coast. This convection is forced by thermal and dynamic instabilities and generally is capped below 500 hPa. The thermally induced sea breeze modifies the desert Planetary Boundary Layer (PBL) and propagates inland as a density current. The leading edge of the denser marine air rapidly moves inland undercutting the hot and dry desert air mass. The warm air lifts up along the sea breeze front (SBF). Despite large moisture flux from the sea, the shallow convection in SBF does not cause precipitation on the most part of the Arabian coastal plane. The main focus of this research is to study the vertical structure and extent of convective activity in SBF and to differentiate flow regimes that lead to dry and wet convection. The Weather Research and Forecasting Model (WRF) has been employed at a high spatial resolution of 500 m to investigate the thermodynamic structure of the atmospheric column along the SBF. We found that convection occurs during offshore and cross-shore mean wind conditions; precipitation in SBF frequently develops in the southern region of the Red Sea along the high terrain of Al-Sarawat Mountains range, while on most of the days convection is dry in the middle region and further north of the Red Sea. The coherent structures in the PBL, horizontal convective rolls (HCRs) and open convective cells (OCCs), play an important role shaping interaction of SBF with the desert boundary layer. The HCRs develop in the midmorning along the mean wind vector and interact with the SBF. Later in the afternoon HCRs evolve into OCCs. The convection is strongest, where the HCR and OCC updrafts overlap with SBF and is weakest in their downdraft regions.